Archives

February 2015 の記事

oga at 23:28
大幅に強化された CPU と違い、GPU 周りは Raspberry Pi 1 とほとんど変わっていないようです。
以前移植したコードが Raspberry Pi 2 でもそのまま動いています。

Raspberry Pi 2 の Desktop (Raspbian) から起動できる Minecraft は、
一見 Windows 内で動いているように見えますが他のウィンドウの下に隠れることができません。
3D Rendering 自体は別のレイヤーに描画されており、
スクリーンに対して Overlay で表示されているようです。

raspberry_pi_201.jpg

↑ 上のように半透明が描画されているシーンだけ下のウィンドウが透けて見えます。
フレームバッファに alpha 値が入るとレイヤー同士の合成とみなされてしまうため。


この辺りの挙動は Window 無しのフルスクリーン描画と違いがないようです。
自分が移植したプログラムでも最初は下記のようになっていました。

raspberry_pi_202.jpg

↑背景を alpha = 0.0f でクリアしていたため console と合成されてしまっています。
うっすら見えているのは alpha 値が入っているところだけです。

OpenGL で常に Alpha=1.0 を書き込んでも良いのですが、
VideoCore の API でも指定できるようです。
下記のように alpha に固定値 255 を指定することで layer が不透明になりました。

static VC_DISPMANX_ALPHA_T alpha= {
  DISPMANX_FLAGS_ALPHA_FIXED_ALL_PIXELS,
  255,
  NULL
};

dispman_element= vc_dispmanx_element_add(
  dispman_update,           // DISPMANX_UPDATE_HANDLE_T
  dispman_display,          // DISPMANX_DISPLAY_HANDLE_T
  0,                        // layer
  &dest_rect,               // VC_RECT_T*
  0,                        // DISPMANX_RESOURCE_HANDLE_T
  &src_rect,                // VC_RECT_T*
  DISPMANX_PROTECTION_NONE, // DISPMANX_PROTECTION_T
  &alpha,                   // VC_DISPMANX_ALPHA_T
  NULL,                     // DISPMANX_CLAMP_T*
  DISPMANX_NO_ROTATE        // DISPMANX_TRANSFORM_T
);

↓不透明になったもの

raspberry_pi_203.jpg

他にも位置の指定や拡縮、90度回転や反転等の指定もできるようです。

↓ ありもののケース(旧型)

raspberry_pi_1b.jpg


関連エントリ
Raspberry Pi 2 で速くなったコンパイル時間の比較


oga at 20:29
Raspberry Pi 2 を入手したので使ってみました。
ARM11 の Raspberry Pi と比べると格段に速くなっています。

VFP Benchmark の比較

               CPU       clock       single fp      double fp
----------------------------------------------------------------
Raspberry Pi B ARM1176   0.7GHz x1   0.674 GFLOPS   0.674 GFLOPS
Raspberry Pi 2 Cortex-A7 0.9GHz x4   7.087 GFLOPS   3.472 GFLOPS

ARM11 世代の VFP と比べると core あたり 2.6倍 (単精度時,クロック差含む)。

詳細な結果は下記に追加しました

VFP Benchmark Log

Cortex-A7 は big.LITTLE でも省電力 core として用いられており、
単体の性能はあまり高くありません。

それでもエントリークラスのスマートフォンやタブレットでは
同じ Cortex-A7 Quad core のデバイスが多数リリースされています。
Snapdraogn 400 MSM8926/8226 や MT8125/8389/6582 など、
それなりにバランスが良い構成なのだと思われます。

下記は手持ちライブラリ(flatlib3)のビルド時間の比較です。
36分から 5分半へと現実的な数値になりました。
SD Card の速度に依存するためあまり正確ではないですが、
およそ 6.6倍で公称値通りといえそうです。

                                Clock  core  ISA    RAM    gcc-4.8 clang-3.4
---------------------------------------------------------------------------
(1) Raspberry Pi B ARM1176JZF   0.7GHz x1    armv6l 0.5GB   36m18s
(2) Raspberry Pi 2 Cortex-A7    0.9GHz x4    armv7l   1GB    5m29s
(3) Nexus 7 2012   Cortex-A9    1.3GHz x4    armv7l   1GB    3m42s
(4) Atom Z540      Bonnell      1.8GHz x1+HT x86      2GB    6m23s   6m18s
(5) BayTrail-D J1900 Silvermont 2.0GHz x4    x86_64   8GB    1m30s   1m11s
(6) Athlon-5350    Jaguar       2.0GHz x4    x86_64   8GB    1m33s   1m10s
(7) Core i7-2720QM SandyBridge  2.2GHz x4+HT x86_64  16GB    0m31s   0m24s

・36m18s = 36分18秒
・値は実行時間(3回の平均)。数値が小さい方が高速

Raspberry Pi 2 でそのままビルドすると ARMv6 のバイナリが生成されるため、
gcc-4.8 -march=armv7-a mfpu=neon-vfpv4 のオプションでコンパイルしています。

下記はそれぞれの詳細です。

(1) Raspberry Pi model B
BMC2835 ARM1176JZF 0.7GHz x1
RAM 512MB, SD 16GB
Debian wheezy armv6l (console)


(2) Raspberry Pi 2 model B
BMC2836 Cortex-A7 0.9GHz x4
RAM 1GB DDR2, SD 16GB
Debian wheezy armv7l (console)
gcc-4.8 (-march=armv7-a mfpu=neon-vfpv4)


(3) Nexus 7 (2012)
Tegra 3 T30L Cortex-A9 1.3GHz x4
RAM 1GB DDR3L, 8GB
Ubuntu 13.04 armv7l (console)


(4) VAIO Type P
Atom Z540 Bonnell 1.86GHz x1+HT
RAM 2GB, SSD 64GB
Ubuntu 14.04LTS x86 (console)


(5) Desktop PC
BayTrail-D Celeron J1900 Silvermont 2.0GHz x4
RAM 8GB, HDD
Ubuntu 14.04LTS x86_64


(6) Desktop PC
Athlon-5350 Jaguar 2.0GHz x4
RAM 8GB, HDD
Ubuntu 14.04LTS x86_64


(7) Desktop PC
Core i7-2720QM SandyBridge 2.2GHz x4+HT
RAM 16GB, HDD
Ubuntu 14.04LTS x86_64

GPU 周りは変わっていないようです。下記ページに追加しました。

CPU/GPU OpenGL ES Extension (Mobile GPU)